How to Al (Almost) Anything Lecture 5 – Multimodal Fusion

Paul Liang

Assistant Professor
MIT Media Lab & MIT EECS

https://pliang279.github.io ppliang@mit.edu @pliang279

Assignments for This Coming Week

For project:

- I gave feedback and assigned primary TA.
- Meet with me and primary TA every other week.
- Should have finalized main ideas and experimental setup, have baseline models working, progress towards implementing new ideas.

Reading assignment due tomorrow Wednesday (3/12).

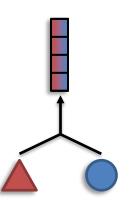
This Thursday (3/13): third reading discussion on **multimodal alignment**.

What views for contrastive learning Platonic representation hypothesis

Today's lecture

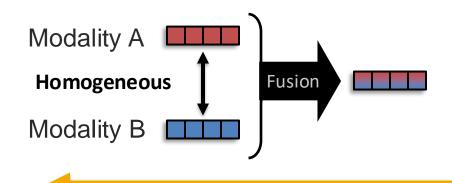
- Basics of multimodal fusion
- Early, intermediate, late fusion
- Multiplicative and dynamic fusion
- 4 Complex fusion and improving optimization

Sub-Challenge 1a: Representation Fusion

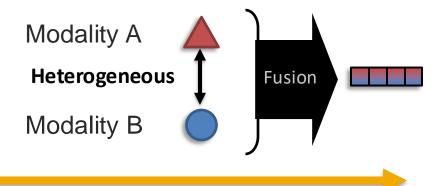


Definition: Learn a joint representation that models cross-modal interactions between individual elements of different modalities.

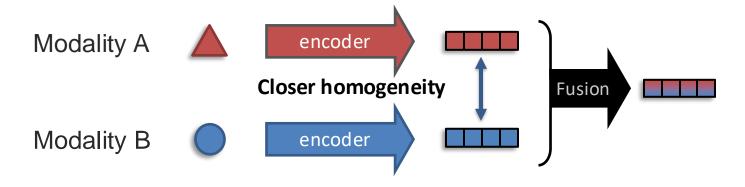
Fusion with abstract modalities:



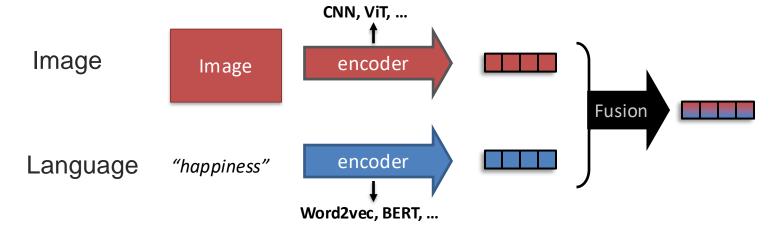
Fusion with raw modalities:



Fusion with Abstract Modalities



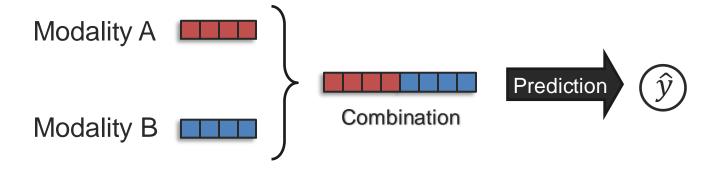
Example:



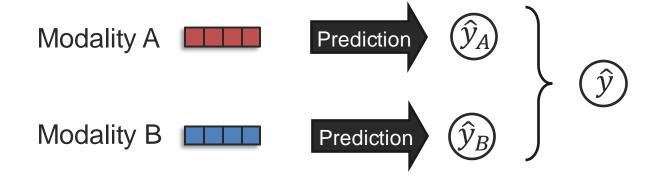
Unimodal encoders can be jointly learned with fusion network, or pre-trained

Early and Late Fusion

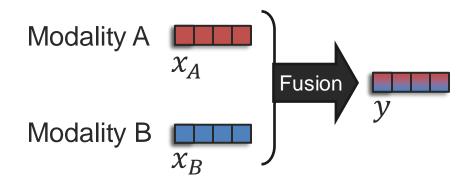
Early fusion:



Late fusion:



Basic Concepts for Fusion



Goal: Model *cross-modal interactions* between the multimodal elements

Let's study the univariate case first (only 1-dimensional features)

$$y = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

intercept Additive Multiplicative error
(bias term) terms term (residual term)

300 book reviews

y: audience score

 x_A : percentage of smiling

 x_B : professional status (0=non-critic, 1=critic) **H1:** Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

$$y = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

intercept Additive Multiplicative error (bias term) terms term (residual)

Additive terms

Multiplicative error (residual term) term

 w_0 : average score when x_A and x_B are zero

 w_1 : effect from x_A variable only

 w_2 : effect from x_R variable only

 w_3 : effect from x_A and x_B interaction only

 ϵ : residual not modeled by w_0 , w_1 , w_2 or w_3

300 book reviews

y: audience score

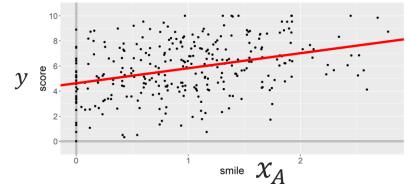
 x_A : percentage of smiling

 x_B : professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

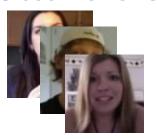
H2: Does the effect of smiling depend on professional status?

$$y = w_0 + w_1 x_A + \epsilon$$



	Estimate
w_0	4.63
w_1	1.20

300 book reviews



y: audience score

 x_A : percentage of smiling

 x_B : professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

$$y = w_0 + w_1 x_A + w_2 x_B + \epsilon$$

$$y = w_0 + w_1 x_A + w_2 x_B + \epsilon$$

$$y = w_0 + w_1 x_A + w_2 x_B + \epsilon$$
is_critic

	Estimate	
w_0	5.29	
w_1	1.19	Positive effect
W_2	-1.69	Negative effect

300 book reviews

y: audience score

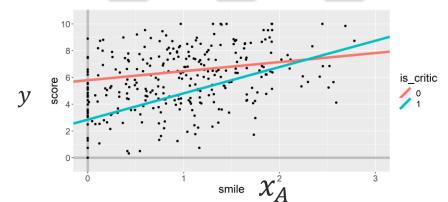
 x_A : percentage of smiling

 x_B : professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

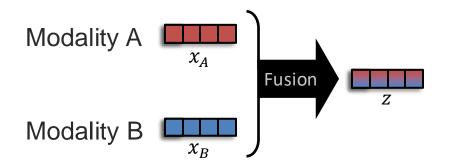
H2: Does the effect of smiling depend on professional status?

$$y = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$



	Estimate
w_0	5.79
w_1	0.68
W_2	-2.94
W_3	1.29

Basic Concepts for Representation Fusion



Goal: Model *cross-modal interactions* between the multimodal elements

Let's study the univariate case first

(only 1-dimensional features)

Linear regression:

$$z = w_0 + \underbrace{w_1 x_A + w_2 x_B}_{\text{constant}} + \underbrace{w_3 (x_A \times x_b)}_{\text{Multiplicative error}} + \epsilon$$

1 Additive interaction:

$$z = w_1 x_A + w_2 x_B + \epsilon$$

2 Multiplicative interaction:

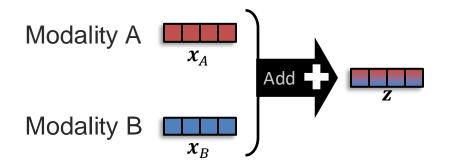
$$z = w_3(x_A \times x_b) + \epsilon$$

3 Additive and multiplicative interactions:

$$z = w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

Additive Fusion Back to multivariate case!

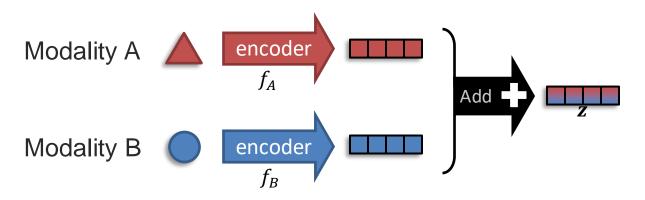
(multi-dimensional features)



Additive fusion:

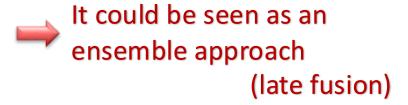
$$z = w_1 x_A + w_2 x_B$$

With unimodal encoders:

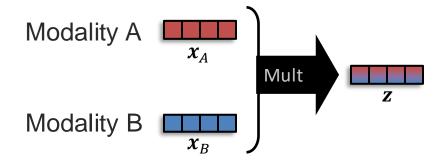


Additive fusion:

$$\mathbf{z} = f_A(\triangle) + f_B(\bigcirc)$$

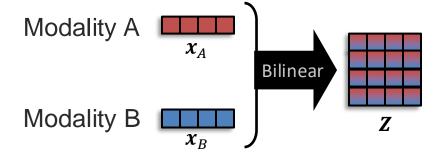


Multiplicative Fusion



Multiplicative fusion:

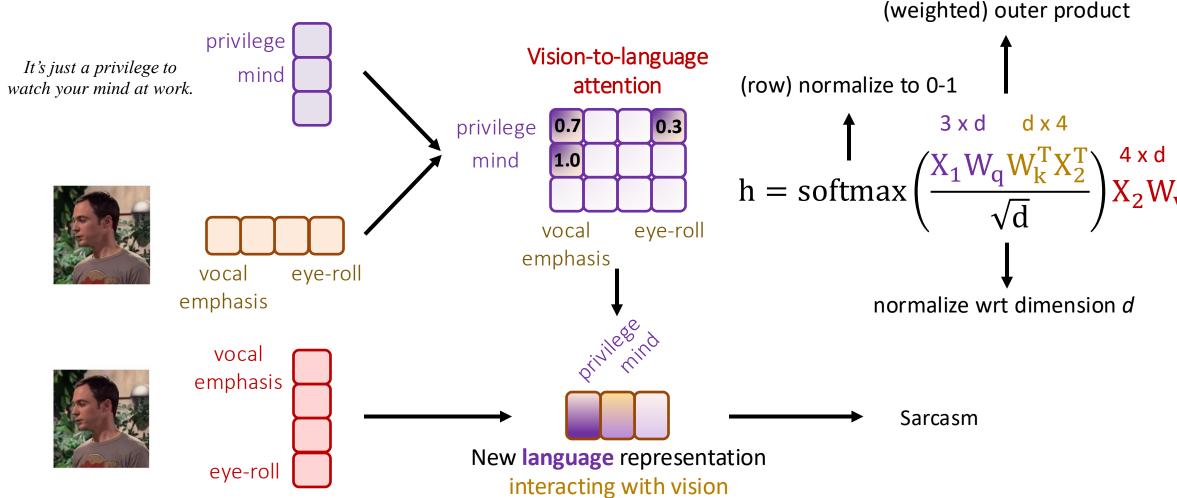
$$z = w(x_A \times x_B)$$



Bilinear Fusion:

$$Z = w(x_A^T x_B)$$

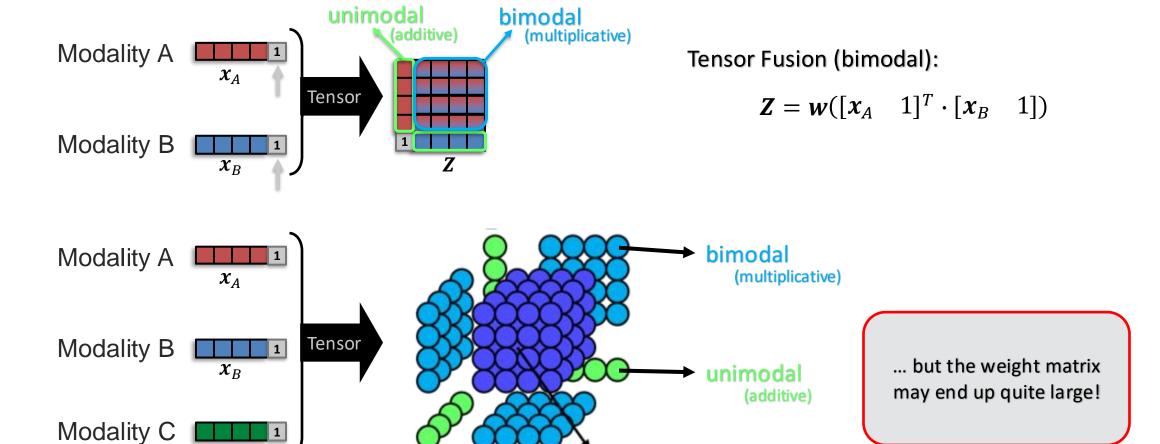
Multimodal Transformers



[Liang et al., Multimodal Language Analysis with Recurrent Multistage Fusion. EMNLP 2018]
[Tsai, Bai, Liang et al., Multimodal Transformer for Unaligned Multimodal Language Sequences. ACL 2019]

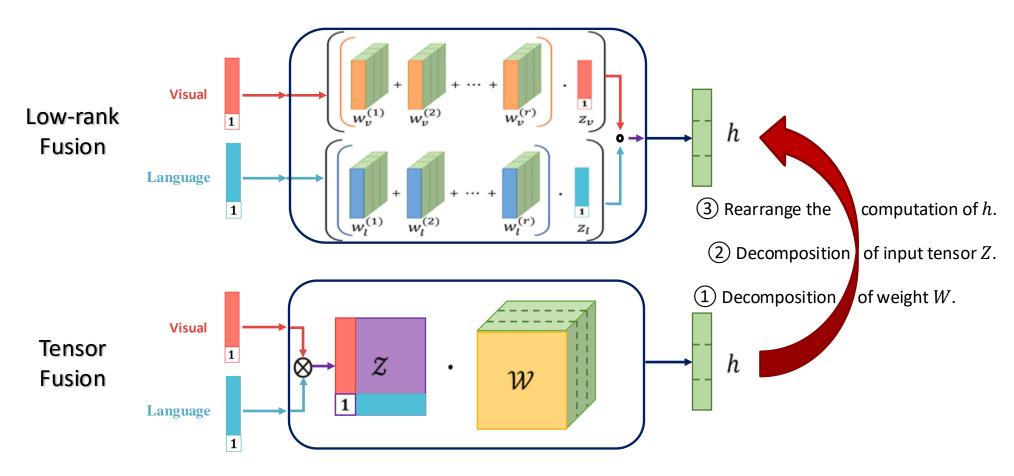
3 x 4

Tensor Fusion

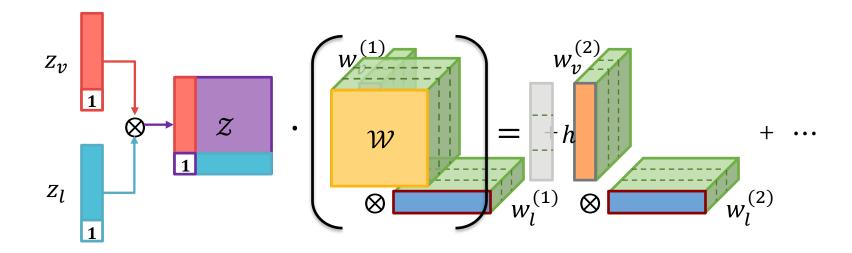


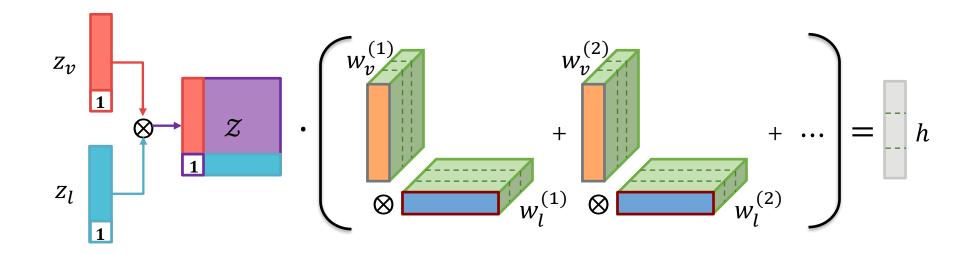
trimodal

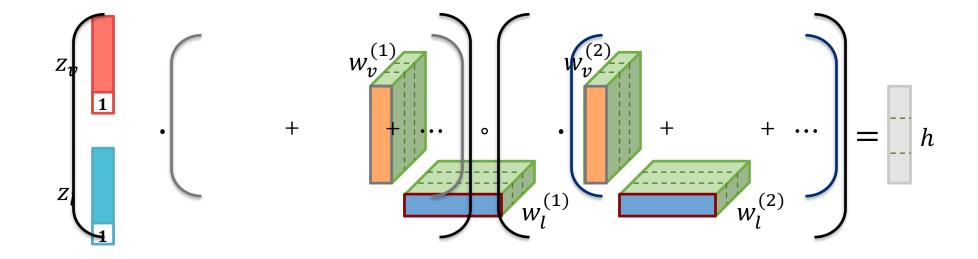
(multiplicative)



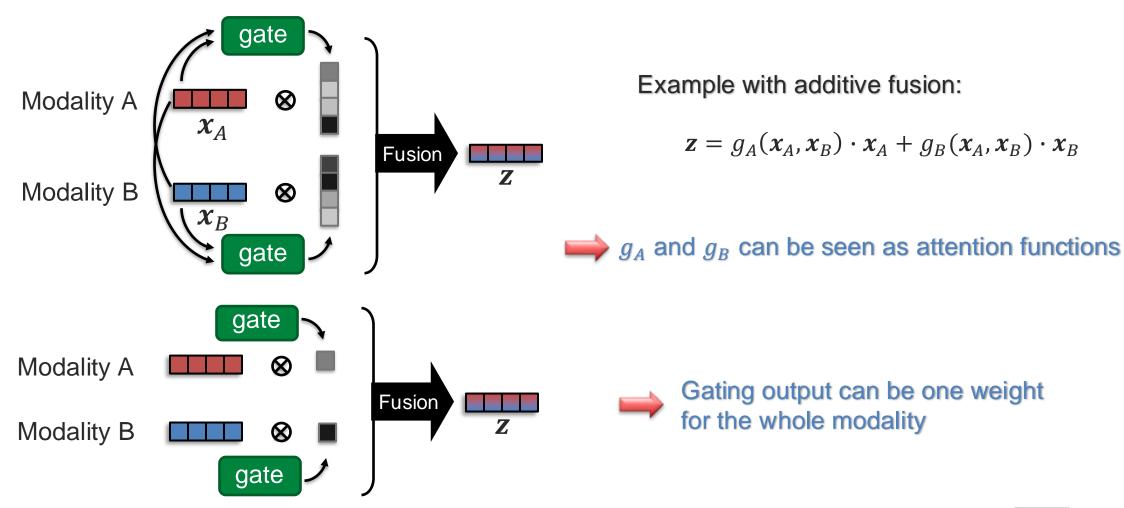
[Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors. ACL 2018] [Hu et al., LoRA: Low-Rank Adaptation of Large Language Models. ICLR 2022]



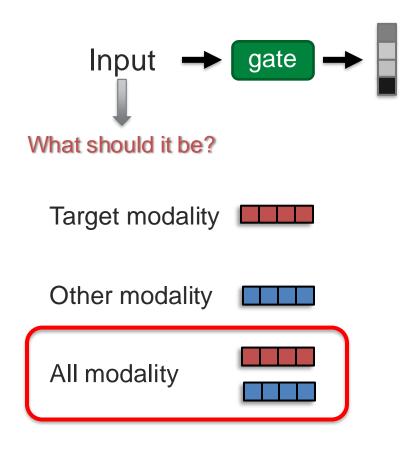




Gated Fusion



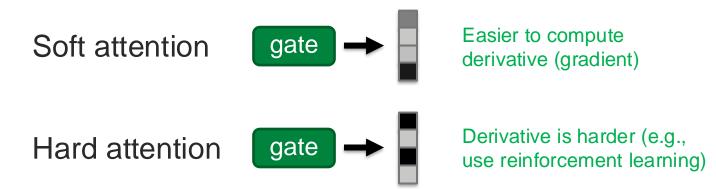
Gated Fusion



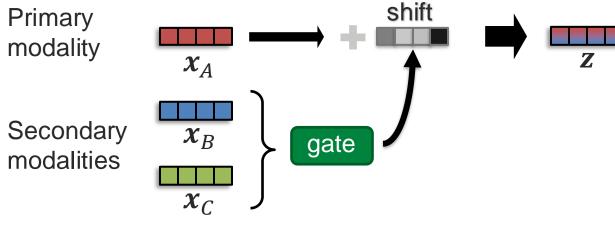
"Neural network designed to mask unwanted signal from propagating forward" (gating)

...or with a more positive view:

"Neural network designed to select preferable signal to move forward" (attention)



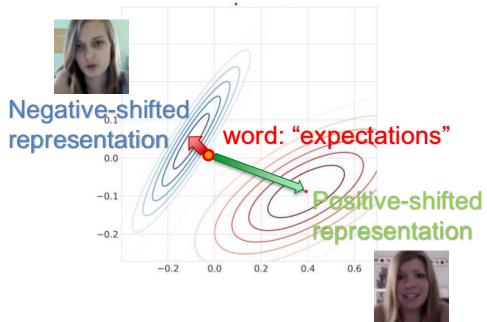
Modality-Shifting Fusion



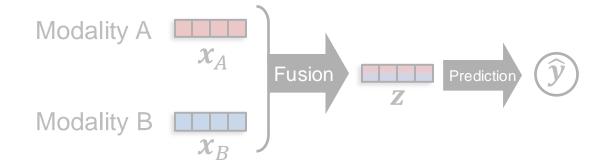
Example with language modality:

Primary modality: language

Secondary modalities: acoustic and visual



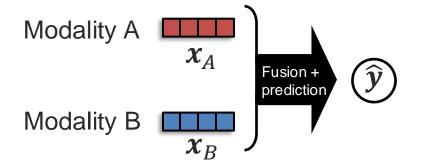
Nonlinear Fusion



Nonlinear fusion:

$$\widehat{\boldsymbol{y}} = f(\boldsymbol{x}_A, \boldsymbol{x}_B) \in \mathbb{R}^d$$

where *f* could be a multi-layer perceptron or any nonlinear model

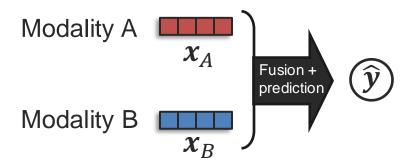


This could be seen as early fusion:

$$\widehat{\mathbf{y}} = f([\mathbf{x}_A, \mathbf{x}_B])$$

... but will our neural network learn the nonlinear interactions?

Measuring Non-Additive Interactions

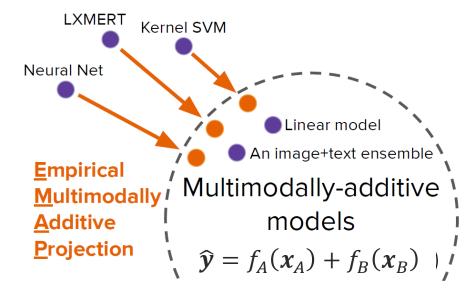


Nonlinear fusion:

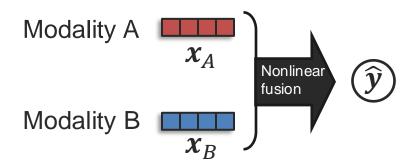
$$\widehat{y} = f(x_A, x_B)$$
Projection?

Additive fusion:

$$\widehat{\mathbf{y}} = f_A(\mathbf{x}_A) + f_B(\mathbf{x}_B)$$



Measuring Non-Additive Interactions



Nonlinear fusion:

$$\widehat{m{y}} = f(m{x}_A, m{x}_B)$$
 Projection? Additive fusion: $\widehat{m{y}}' = f_A(m{x}_A) + f_B(m{x}_B)$

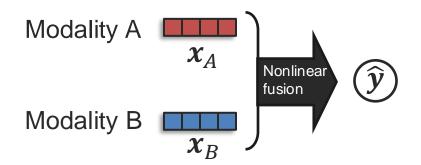
Projection from nonlinear to additive (using EMAP):

$$\tilde{f}(\mathbf{x}_A, \mathbf{x}_B) = \mathbb{E}[f(\mathbf{x}_A, \mathbf{x}_B)] + \mathbb{E}[f(\mathbf{x}_A, \mathbf{x}_B)]$$

$$f_A(\mathbf{x}_A) \qquad f_B(\mathbf{x}_B)$$
Modality A Modality B

Additive fusion (approximation)

Measuring Non-Additive Interactions

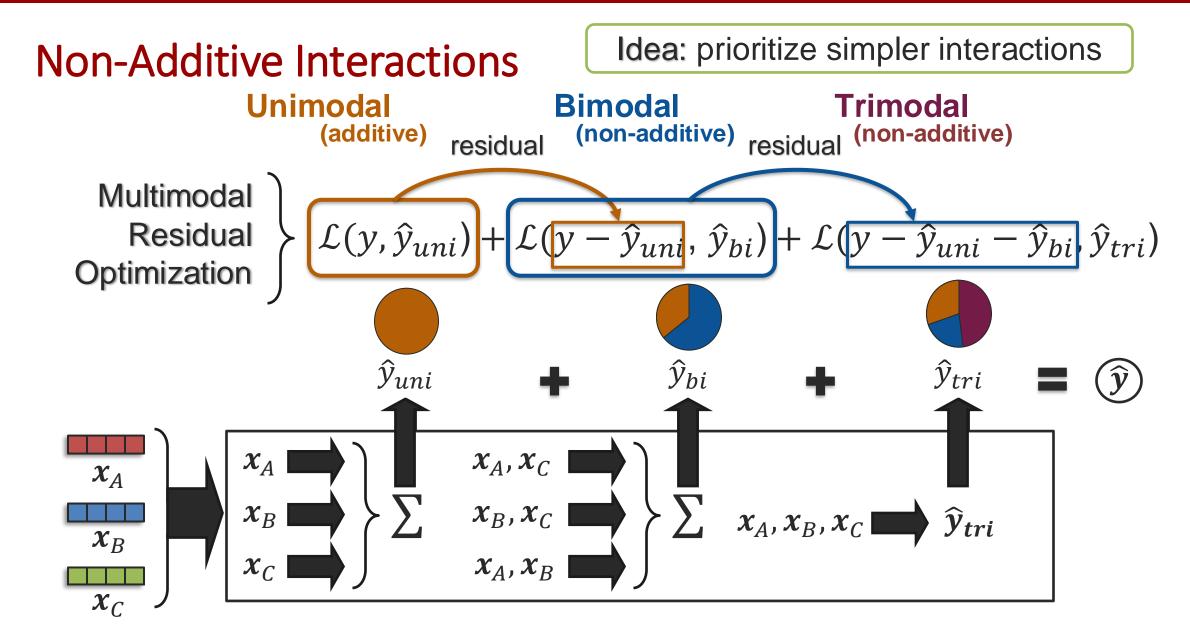


Nonlinear fusion:

$$\widehat{y} = f(x_A, x_B)$$
 EMAP projection Additive fusion:

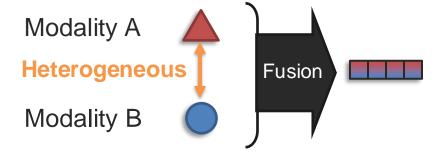
$$\widehat{\mathbf{y}}' = \widehat{f}_A(\mathbf{x}_A) + \widehat{f}_B(\mathbf{x}_B) + \widehat{\boldsymbol{\mu}}$$

	I-INT	I-SEM	I-CTX	T-VIS	R-POP	T-ST1	T-ST2	
Nonlinear — Neural Network	90.4	69.2	78.5	51.1	63.5	71.1	79.9	
Polynomial Polykernel SVM	,91.3,	74.4	,81.5	50.8	_	72.1	80.9	
Nonlinear 🖛 FT LXMERT	83.0	68.5	76.3	53.0	63.0	66.4	78.6	
Nonlinear \longleftrightarrow + Linear Logits	89.9	73.0	80.7	,53.4	_/ 64.1 _\	,75.5 _\	80.3	Always a
Additive Linear Model	90.4	72.8	80.9	51.3	63.7	75.6	76.1	good baselir
Best Model	91.3	74.4	81.5	53.4	64.2	75.5	80.9	Differences
Additive + EMAP	91.1	74.2	81.3	5 1.0	64.1	⁴ 75.9	₹80.7 ▲	are small!!!



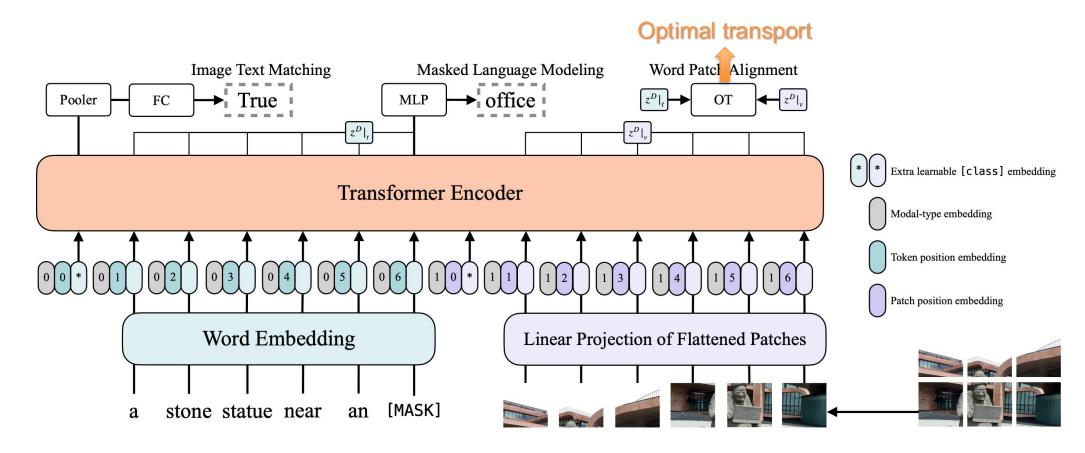
Fusion with Heterogeneous Modalities

Example: From feature fusion to early fusion



Visual-and-Language Transformer (ViLT)

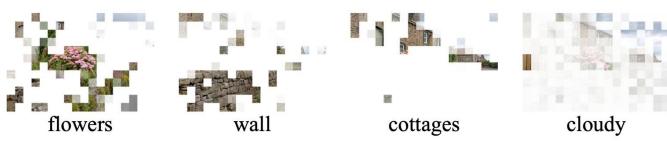
(≈ BERT + ViT)



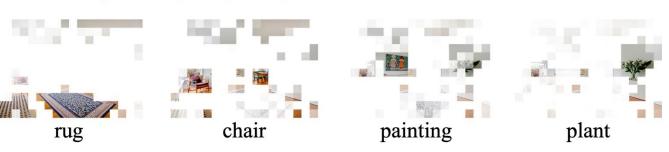
Visual-and-Language Transformer (ViLT)

Example of alignment between modalities:

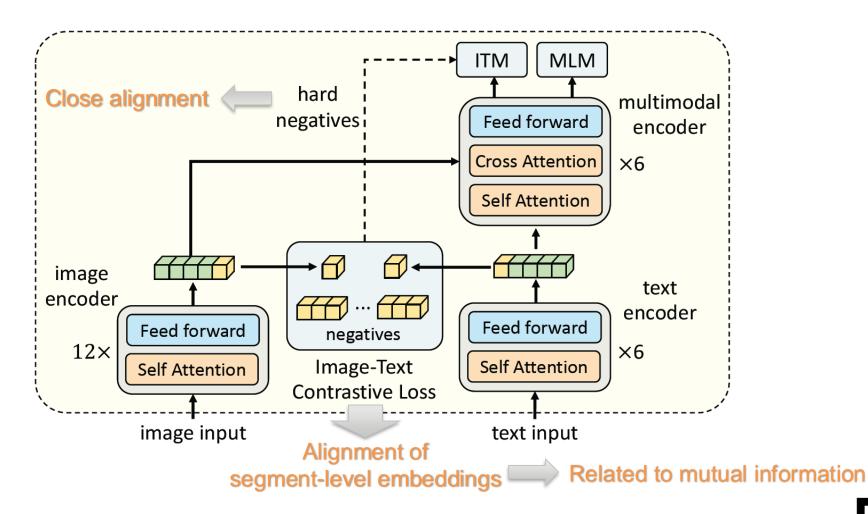
a display of flowers growing out and over the retaining wall in front of cottages on a cloudy day.



a room with a rug, a chair, a painting, and a plant.



ALBEF: Align Before Fusion (≈ BERT + ViT + CLIP-ish)



Nonlinear Fusion

Kinetics dataset

Adding more modalities should always help?

Modalities: RGB (video clips)

A (Audio features)

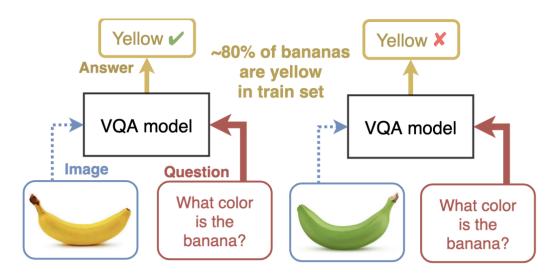
OF (optical flow - motion)

Dataset	Multi-modal	V@1	Best Uni	V@1	Drop
TZ:4:	A + RGB	71.4	RGB	72.6	-1.2
	RGB + OF	71.3	RGB	72.6	-1.3
Kinetics	A + OF	58.3	OF	62.1	-3.8
	A + RGB + OF	70.0	RGB	72.6	-2.6

But sometimes multimodal doesn't help! Why?

Unimodal Biases

Finding: VQA models answer the question without looking at the image



Finding: Image captioning models capture spurious correlations between gender and generated actions.

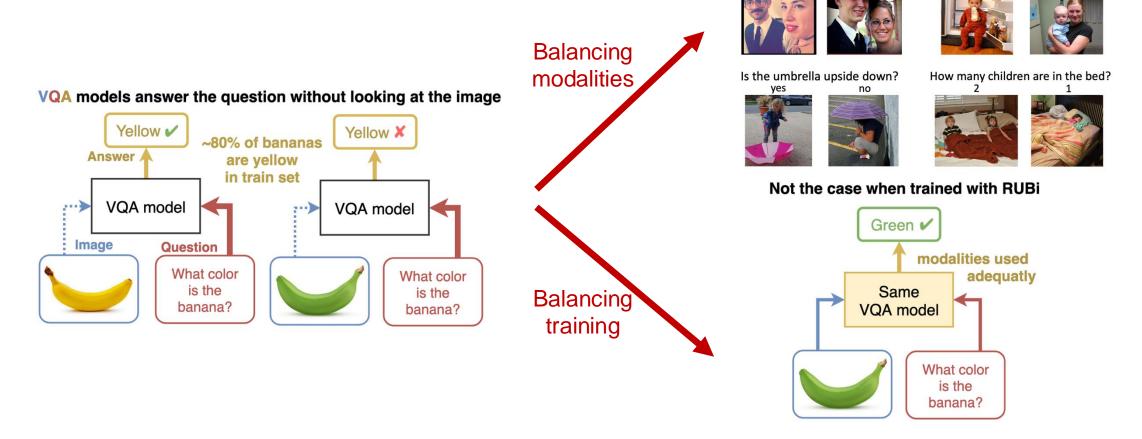
Wrong

Baseline: A **man** sitting at a desk with a laptop computer.

Right for the Wrong Reasons

Baseline: A **man** holding a tennis racquet on a tennis court.

Unimodal Biases



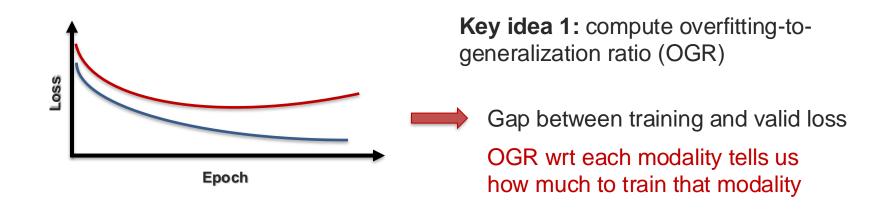
Who is wearing glasses?

Where is the child sitting?

Optimization Challenges

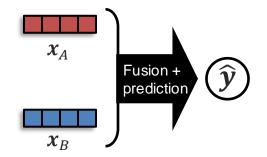
2 explanations for drop in performance:

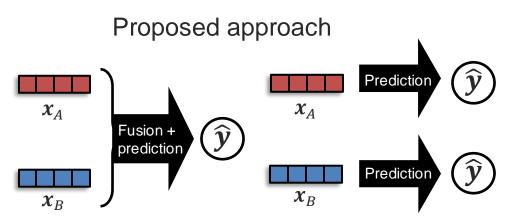
- 1. Multimodal networks are more prone to overfitting due to increased complexity
- 2. Different modalities overfit and generalize at different rates



Optimization Challenges

Conventional approach



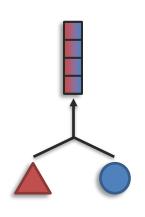


Key idea 2: Simultaneously train unimodal networks to estimate OGR wrt each modality

Reweight multimodal loss using unimodal OGR values

Allows to better balance generalization & overfitting rate of different modalities

Summary: How To Multimodal Fusion



Definition: Learn a joint representation that models cross-modal interactions between individual elements of different modalities

Homogenous modalities

Late fusion

Additive fusion

Multiplicative fusion

Tensor fusion

Polynomial fusion

Modality-shift fusion

Sated fusion

Nonlinear fusion

Very early fusion Dynamic early fusior mproving optimization mproving robustness

Heterogenous modalities

Lecture Summary

- Basics of multimodal fusion
- Early, intermediate, late fusion
- Multiplicative and dynamic fusion
- Complex fusion and improving optimization

Assignments for This Coming Week

For project:

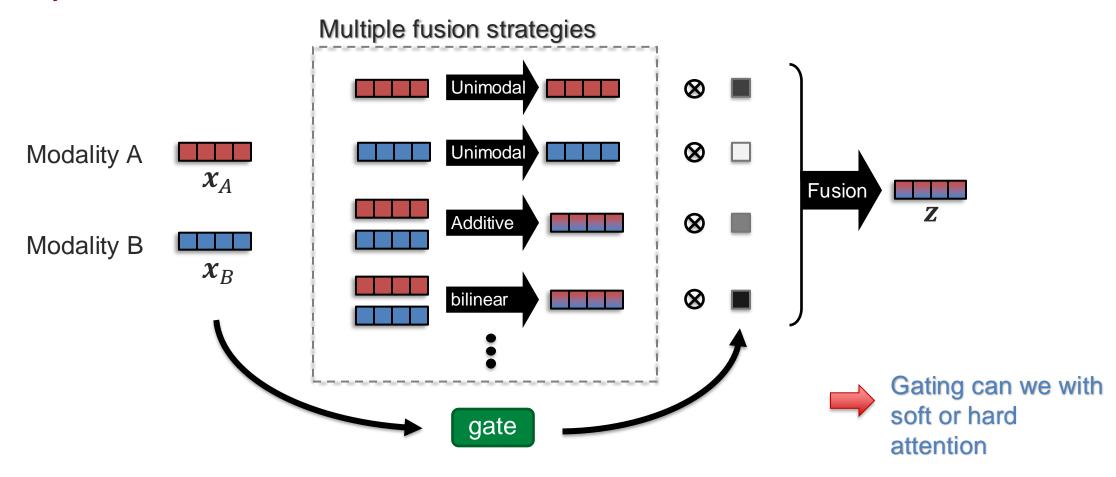
- I gave feedback and assigned primary TA.
- Meet with me and primary TA every other week.
- Should have finalized main ideas and experimental setup, have baseline models working, progress towards implementing new ideas.

Reading assignment due tomorrow Wednesday (3/12).

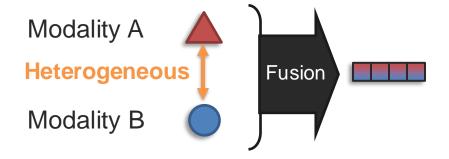
This Thursday (3/13): third reading discussion on multimodal alignment.

What views for contrastive learning Platonic representation hypothesis

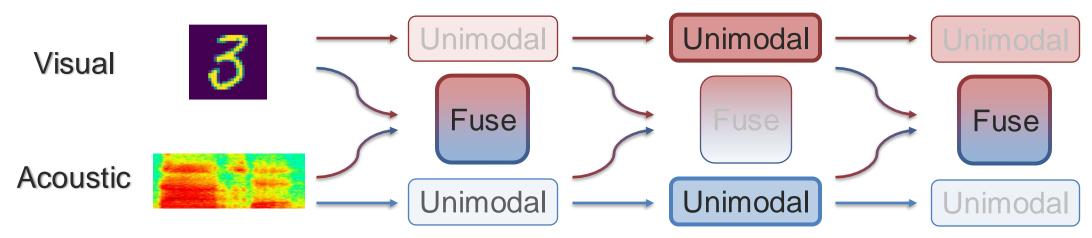
Dynamic Fusion



Dynamic Early Fusion



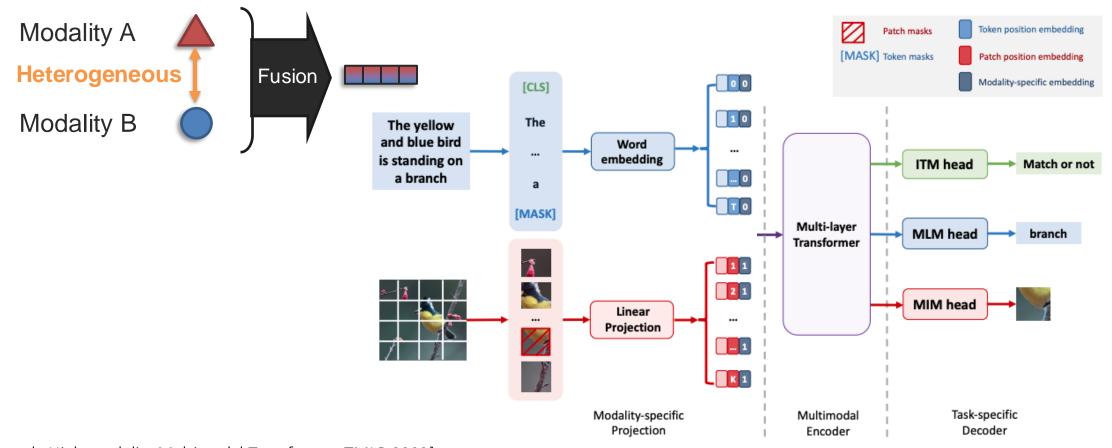
Idea: Deciding when to fuse in early fusion



[Xue and Marculescu, Dynamic Multimodal Fusion, arxiv 2022]
[Xu et al., MUFASA: Multimodal Fusion Architecture Search for Electronic Health Records. AAAI 2021]
[Liu et al., DARTS: Differentiable Architecture Search. ICLR 2019]

Fusion with Heterogeneous Modalities

Example: From feature fusion to early fusion



[Liang et al., High-modality Multimodal Transformer. TMLR 2022] [Gui et al., Training Vision-Language Transformers from Captions. arxiv 2022]